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Several pupil filtering techniques have been developed in the last few years to obtain transverse superresolution
(a narrower point spread function core). Such a core decrease entails two relevant limitations: a decrease of the
peak intensity and an increase of the sidelobe intensity. Here, we calculate the Strehl ratio as a function of
the core size for the most used binary phase filters. Furthermore, we show that this relation approaches the
fundamental limit of the attainable Strehl ratio at the focal plane for any filter. Finally, we show the calculation
of the peak-to-sidelobe ratio in order to check the system viability in every application.
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The term superresolution has been widely used in scien-
tific literature with two different meanings: the increase
of the spatial frequency cutoff in an optical system, on
one hand, and the increase of the generalized Rayleigh res-
olution on the other. Here, we will use the latter meaning,
introduced in the classical works by Toraldo di Francia[1],
which can also be associated with a decrease of the point
spread function (PSF) core width. Such a decrease can be
useful in many applications[2–6], and has been analyzed in
many works[7–9]. The first attempts of PSF engineering
were related to amplitude filters, but in recent years
phase and hybrid designs[9,10] (including ternary optical
elements[11,12]) have been developed due to their better
performance in most applications[13,14]. Among all filters,
binary 0-π phase filters[15] stand out because they do not
produce focus displacement, achieve excellent perfor-
mances, allow several analytical results, and are easily
fabricated. For these reasons they have been proposed for
several applications[16–19]. Moreover, as will be seen, these
filters provide the highest PSF peak for a certain resolu-
tion without focus displacement.
Toraldo di Francia already realized that theoretically

an optical instrument with a given pupil size can yield
as a narrow a PSF core as desired, but with the unavoid-
able cost of energy loss. The quantification of such energy
loss is of utmost relevance because it can determine the
viability of a technique in an application. In the crucial
case of binary 0-π filters, this limit has been estimated
analytically[15] by using parabolic approximation. Such
approximation is not accurate enough, so the main goal
of this work is to obtain a more accurate calculation of
energy loss for such filters, which are the ones used most
because of their known excellent performance.
Moreover, we will demonstrate that, for a given peak

height, binary two-zone 0-π phase filters yield the best res-
olution at the focal plane of all real filters. Hence, this
relation between the energy loss and the resolution can
be considered as a fundamental limit for such a filter’s

performance (at this point we must note that we are con-
sidering systems with rotational symmetry). This limit is
relevant for practical and theoretical reasons. The best
attempts to derive a fundamental limit was performed by
Sales and Morris[20,21], who derived an upper bound for the
Strehl ratio limit from an expansion of the Bessel function
of order zero in the expression of the field at the focal
plane. This theoretical bound works very well for low
Strehl values, though it overestimates the limit for higher
values, so Sales and Morris solved this issue by substitut-
ing a region of their curve by a linear fit based precisely on
0-π binary filters. Here, we will derive the limit in a differ-
ent way, which has results that are even a bit more restric-
tive. To this aim, we will follow this scheme. First, we will
derive the relation between resolution and energy loss by
using common figures of merit. Secondly, we will demon-
strate that 0-π filters yield the highest peak for a fixed res-
olution of all two-zone filters. Then, we will demonstrate
that two-zone filters outperform filters with a higher num-
ber of zones (which includes continuous filters). These
demonstrations show that 0-π filters outperform any other
real filter, which means that the calculated relation is a
fundamental limit for the pupil filtering techniques with
no focus displacement. Furthermore, the comparison of
0-π filters with complex filters is discussed. Finally, reso-
lution improvement gives rise not only to a Strehl de-
crease, but also to an increase in the sidelobe intensity[22].
In most applications, the sidelobe height is as crucial as
the Strehl ratio and the resolution to make a technique
viable. Consequently, we show the calculation of the peak-
to-sidelobe ratio corresponding to the limit case.

In order to relate the resolution and the energy loss, we
need some figures of merit that describe the PSF. We have
chosen the same figures of merit as Sales and Morris: the
Strehl ratio S , defined as the ratio of the intensity at the
focal point corresponding to an unobstructed pupil, and
the normalized spot size G, which is the ratio of the radius
of the first zero of the superresolving diffraction pattern to
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that of the Airy pattern. In addition, we will also analyze
the peak-to-sidelobe ratio Γ in order to check the perfor-
mance of the filters [in most applications low values of Γ
(<10) are not acceptable]. In addition, it must be noted
that in real applications, the sidelobe may be reduced
through hybrid filters[9] or nonlinear effects[23].
The first step is the derivation of the Strehl ratio limit

for 0-π filters. Let us consider a general complex pupil
function PðρÞ (with rotational symmetry), where ρ is
the normalized radial coordinate. For a converging mono-
chromatic spherical wave front passing through the center
of the pupil, the normalized field amplitude U in the focal
plane may be written as[24]

U ðvÞ ¼ 2
Z

1

0
PðρÞJ 0ðvρÞρdρ; (1)

where Jn represents a Bessel function of the first kind (0th
order in this case), v is the radial dimensionless optical co-
ordinate at the focal plane given by v ¼ k NA r with
k ¼ 2π∕λ, NA is the numerical aperture of the pupil,
and r is the usual radial distance. In the case of 0-π binary
phase filters with two zones [PðρÞ ¼ −1 if ρ < ρ1 and one if
ρ1 < ρ < 1], the integral in Eq. (1) yields:

UðvÞ ¼ 2
�
J1ðvÞ
v

− 2ρ1
J1ðρ1vÞ

v

�
; (2)

where ρ1 is the normalized radius of the first zone (note
that a similar expression for n-zone phase filters can be
found in Ref. [22]). The core width is given by the position
of the first zero, v0 ¼ v0Airy G ¼ 1.22π G ¼ 3.83G. At this
position the following equation must be fulfilled:

J1ð3.83GÞ ¼ 2ρ1J1ð3.83Gρ1Þ: (3)

The core height is given by the Strehl ratio:

S ¼ jU ð0Þj2 ¼ ð1− 2ρ21Þ2: (4)

From Eqs. (3) and (4), the resolution and intensity of the
PSF core can be related. Equation (3) can be solved
numerically for each G, while the corresponding S can
be obtained from Eq. (4) [it must be noted that the curves
of Sðρ1Þ andGðρ1Þ can be found in Ref. [25], but not SðGÞ,
the main goal of this work, which is a very relevant rela-
tionship for the analysis of filter performance].
Furthermore, it is very interesting to expand the Bessel

function, J1, in the second term of Eq. (3), in order to
derive analytical expressions. It allows us to avoid the
numerical resolution of Eq. (3) and, consequently, to ob-
tain a direct expression of SðGÞ, which yields an easier and
deeper understanding of system behavior. If the first two
terms of the expansion are used, then Eq. (3) can be
solved by

ρ1 ¼
2

3.83G

�
1−

�
1−

3.83GJ1ð3.83GÞ
2

�
1∕2�1∕2

; (5)

and the analytical expression between S and G can be
found from Eq. (4):

S ¼
�
1− 2

�
2

3.83G

�
2
�
1−

�
1−

3.83GJ1ð3.83GÞ
2

�
1∕2��2

:

(6)

Higher order terms can be used. With three terms of the J1

expansion, the radius can be derived and the correspond-
ing Strehl ratio is

S ¼
�
1− 2

�
2

3.83G

�
2

×
�
2−

�
1−

			
3

p
i

�

−1þ 3
8
3.83GJ1ð3.83GÞ

�
1∕3��2

:

(7)

Note that Eq. (7), in spite of the complex numbers, is al-
ways real. Figure 1 shows these expressions of S as a func-
tion of the core size G. It can be seen that the fit with the
exact curve of the approximation with two terms is very
good. The use of the three-term approximation entails a
slight improvement. As a consequence, both can be useful
for system analysis. Furthermore, if these curves are com-
pared with the parabolic approximation for 0-π filters[15], it
can be seen that such approximation is too restrictive, and
that the new derived relationship between energy loss and
resolution, as shown in Eq. (7), is more accurate.

On the other hand, when comparing these curves with
the upper bound for general filters[20], one could wonder if
0-π filters were far from optimum behavior. However, we
are going to demonstrate that 0-π filters outperform other
filters, and consequently, the derived curve seems to be a

Fig. 1. Strehl ratio (solid curve) as a function of the core size.
The approximations given by Eq. (6) (dotted curve) and
Eq. (7) (short dashed-dotted curve) are also shown. Note that
the latter is indistinguishable from the exact one. The Strehl
ratio limit by Sales and Morris (dash-dotted curve) and by the
parabolic approximation (dash-dot-dotted curve) are also shown
for comparison. Finally, the peak-to-sidelobe ratio (dashed
curve) for 0-π filters is shown in the secondary axis.
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fundamental limit for filter performance. Let us begin the
comparison with other filters. First, we choose two-zone
real filters, which can be represented by

PðρÞ ¼
�
t 0 ≤ ρ ≤ ρ1
1 ρ1 < ρ ≤ 1

; (8)

where t is the transmittance of the inner zone. Amplitude
filters correspond to t ≥ 0 while phase and hybrid filters
present t < 0. Note that we have chosen t in the inner zone
(such choice seems almost evident, and it can be demon-
strated that it is the best option in a very similar way to
the rest of demonstration of this work). The field at the
focal plane becomes

UðvÞ ¼ 2
�
J1ðvÞ
v

− ð1− tÞρ1
J1ðρ1vÞ

v

�
: (9)

The corresponding Strehl ratio is S ¼ ½1− ð1− tÞρ21�2.
From this expression it can be seen that for a fixed S if
t increases the radius increases. So, the minimum radius
is reached for t ¼ −1, the pure phase filter. Taking into
account the behavior of J 1ðρ1vÞ (whose width decreases
with increasing ρ1) the second term in Eq. (9) is widest
for t ¼ −1, and hence, the resolution is maximum for
t ¼ −1, as shown in Fig. 2 (it can be seen that the wider
the second term, the sooner it equals the first term, giving
a zero of the total field). Conversely, for a fixed resolution,
the maximum S of all real two-zone filters is obtained by
pure phase filters.
Now, we shall demonstrate that the addition of zones

does not improve the Strehl ratio attained with the
two-zone filters for a given resolution, as already suggested
in previous works[9,20] (such multizone filters can still be
interesting because they yield a higher number of solutions
and, thus, more flexibility[26]). Let us consider a three-zone

filter with radii ρ1 and ρ2 (for simplicity we consider that
the intermediate zone has t ¼ −1, without the loss of
generality). From Eq. (1) (or from Ref. [17]) its field is

U ðvÞ ¼ 2J 1ðvÞ
v

− 4
�
ρ2

J1ðρ2vÞ
v

− ρ1
J1ðρ1vÞ

v

�
: (10)

Then we consider a two-zone filter with the same Strehl
ratio as the three-zone filter (it is easy to derive from
Eqs. (4) and (10) that the corresponding radius is
ρ1b ¼ ðρ22 − ρ21Þ1∕2). Now, the term inside the brackets in
Eq. (10) is obviously narrower and lower than J1ðρ2vÞ, but
the corresponding term of the two-zone filter, J1ðρ1bvÞ, is
wider than J 1ðρ2vÞ (again due to the uniform behavior of
J1ðρvÞ with ρ). This means, as can be seen in Fig. 3, that
J1ðρ1bvÞ cuts the first term ðJ1ðvÞ∕vÞ before the term in
brackets does [such cuts are the zeros of UðvÞ] Conse-
quently, the two-zone filter will present a better resolution
than the three-zone filter. Conversely, if we fix the resolu-
tion, the two-zone filter will present the highest Strehl
ratio. The same reasoning used for three-zone filters can
be applied for a higher number of zones and continuous
filters.

The two latter demonstrations can be combined to show
that two-zone 0-π filters reach the best possible perfor-
mance of all filters without focus displacement, which con-
verts the derived expression of SðGÞ into a fundamental
limit for superresolution performance.

The previous conclusion is very important because real
filters are the most common filters. Nonetheless, the com-
parison of 0-π filters with general (complex) filters is of
great interest. The analytical study of the PSF of complex
filters is extremely difficult because there is focus displace-
ment, and consequently, instead of Bessel functions as in
real filters, Lommel functions (which are an infinite
series of Bessel functions) must be used[24]. We have, thus,

Fig. 2. Amplitude PSF for a clear pupil of radius 1, i.e., the first
term of Eq. (9) (dashed curve), which acts as a reference. The
second term of Eq. (9) is shown for t ¼ −1 (solid curve) and
t ¼ 0.5 (dotted curve). For any t value, the first zero of the
PSF is the point where its corresponding second term equals
the reference.

Fig. 3. Amplitude PSF for a clear pupil of radius 1, i.e., the first
term of Eq. (10) (dashed curve). The second term of Eq. (10) is
shown for two-zone filters of radius ρ2 (dash-dotted curve) and
ρ1b (solid curve), and for a three-zone filter of radii ρ1 and ρ2
(dotted curve).
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studied the case numerically. For such a study, we have
chosen two-zone phase filters with a phase difference other
than π (this is a relevant case, because the conclusions can
be generalized for filters with attenuation or a higher num-
ber of zones as in previous sections). In Fig. 4, the Strehl
ratio attainable as a function of resolution for different
phase values is shown. It can be seen that no two-zone fil-
ter outperforms the 0-π filter for any resolution. Besides, it
can be seen that the only filters able to yield any desired
resolution are 0-π filters: the rest of them reach a resolu-
tion limit, which is higher as the phase difference between
phase zones approaches π. The case of general continuous
phase filters with focus displacement is out of the scope of
this work (though generalization of these results suggests
that binary 0-π filters will not be outperformed at the
focal plane).
Finally, in order to complete the filter analysis, we show

the behavior of the peak-to-sidelobe ratio Γ, which is an
important parameter in filter design[8,20]. The position of
the first lobe maximum, vM , of the PSF can be obtained
by deriving the field in Eq. (1), which leads to

J2ðvM Þ ¼ 2ρ21J2ðvMρ1Þ: (11)

Once this position is known, Γ ¼ PSFð0Þ∕PSFðvM Þ can be
calculated. Its behavior is shown in Fig. 1. Note that this
figure shows both S and Γ as a function of the resolution,
and thus, it is a representation of the performance limits of
pupil filters and is a key to decide the viability of super-
resolution techniques in any application.

In conclusion, we calculate more precisely than in our
precious works the Strehl ratio as a function of the core
size in the crucial case of binary 0-π filters. Then, we show
that, for the same resolution, real filters (the most relevant
kind of filter) cannot yield a higher Strehl ratio at the focal
plane than 0-π two-zone filters. Furthermore, by numeri-
cal analysis, no two-zone complex filter outperforms 0-π
two-zone filters. Finally, we include in the analysis the
sidelobe height, so that the most relevant limits for filter
performance can be easily appreciated, which is useful for
filter design.

This work was supported by the by the Ministerio
de Economía y Competitividad under project FIS2012-
31079.
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Fig. 4. Strehl ratio as a function of the core size for two-zone
phase filters with a different phase difference: π∕2 (circles),
3π∕4 filters (triangles), 7π∕8 filters (crosses), 15π∕16 (squares)
and π (solid curve).
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